КОРЖОВА КСЕНИЯ ВИТАЛЬЕВНА

ПРОТИВООПУХОЛЕВАЯ, ПРОТИВОВОСПАЛИТЕЛЬНАЯ АКТИВНОСТЬ И АНТИМЕТАСТАТИЧЕСКИЕ СВОЙСТВА ПРОИЗВОДНЫХ 5-ОКСИПИРИМИДИНА И ИХ КОМБИНАЦИЙ С ДОКСОРУБИЦИНОМ

3.3.6 – фармакология, клиническая фармакология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Научно-исследовательский институт фармакологии имени В.В. Закусова» (ФГБНУ «НИИ фармакологии имени В.В. Закусова»)

Научный руководитель:	
доктор биологических наук	Коваленко Лариса Петровна
Официальные оппоненты:	
доктор медицинских наук, профессор, профессор кафедры организации и управления в сфере обращения лекарственных средств института последипломного образования ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России	Козлов Иван Генрихович
кандидат биологических наук, ведущий научный сотрудник лаборатории регуляции агрегатного состояния крови ФГБНУ «НИИ общей патологии и патофизиологии»	Соколовская Алиса Анатольевна
Ведущая организация: Федеральное государственное б «Томский национальный исследовательский медицински (ФГБНУ «Томский НИМЦ»)	7 7 2
Защита диссертации состоится «» 2022 го ционного совета 24.1.183.01, созданного на базе ФГБНУ В.В. Закусова» (125315, Москва, Балтийская ул., 8)	
С диссертацией можно ознакомиться в библиотеке учено имени В.В. Закусова» по адресу: 125315, г. Москва, ул. Б www.academpharm.ru.	± ±
Автореферат разослан «»2022 года	ı.
Ученый секретарь диссертационного совета доктор медицинских наук, профессор	Вальдман Елена Артуровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

По прогнозам ВОЗ в течение последующих 20 лет число онкологических заболеваний вырастет на 60%, к 2040 году число новых случаев рака в год увеличится до 37 млн, при этом самые высокие показатели будут зарегистрированы в странах с невысоким социально-экономическим уровнем. (Всемирная Организация Здравоохранения. ВОЗ намечает шаги по спасению 7 миллионов жизней от рака. 2020)

Классическими методами лечения онкологических больных являются лучевая терапия, хирургическое лечение и химиотерапия. Комбинации препаратов первой и второй линии химиотерапии опухолей ежегодно анализируются и в ряде случаев меняются, однако в последнее время повышения эффективности традиционных методов лечения не наблюдается (Quintanal-Villalonga A. // Cellular Oncology. 2019. Vol.42, Issue 6. P.739-756). У значительной части пациентов опухоль обнаруживают на поздних стадиях заболевания (Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. Geneva: World Health Organization; 2020), на фоне уже запущенного процесса метастазирования, когда эффективность всех существующих современных методов лечения резко снижается.

Установлено, что 20-25% всех онкологических заболеваний возникает в связи с хроническими инфекциями и хроническим воспалением (Gaffen S.L. // Nature Reviews. Immunology. 2009. Vol. 9. № 8. Р. 556-567), что характеризуется высокой концентрацией проонкогенных цитокинов в микроокружении опухоли. Воспаление играет важную роль в развитии опухолевого процесса, влияя на иммунный надзор на разных стадиях опухолеобразования, включая инициирование роста опухоли и метастазирование (Grivennikov S.I. et al. // Cell. 2010. Vol.140, Issue 6. Р.883-899). В последние годы накоплены данные о механизмах избегания опухолевыми клетками иммунного надзора, которые способствуют развитию злокачественного новообразования и дальнейшему метастазированию. На сегодняшний день фундаментальные исследования в экспериментальной и клинической онкологии в основном направлены на поиск характерных особенностей раковой клетки с целью обнаружить мишени для противоопухолевой иммунотерапии, особое внимание уделяется изучению эффективности ингибиторов иммунных контрольных точек (ИИКТ) – анти-СТLА-4, анти-PD1-моноклональных антител и других таргетных препаратов. Однако большинство высокомолекулярных таргетных препаратов обладают выраженным побочным действием, в том числе вызывает реакции гиперчувствительности (Sachs B., Merk H. F. // Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete. 2018. Vol.69, Issue 4. P. 268–277.), и, кроме того, быстро теряют свою эффективность в лечении онкозаболеваний (Maeda H, Khatami M. // Clin Transl Med. 2018. Vol.7, Issue 1. P.11).

Это актуализирует поиск новых малотоксичных противоопухолевых и антиметастатических соединений, активирующих противоонкогенные механизмы иммунной защиты, оптимизирующих содержание и функциональную активность натуральных киллеров и Т-цитотоксических лимфоцитов, а также снижающих содержание проонкогенных, провоспалительных цитокинов (Christofi, T. et al. // Cancers. 2019. Vol.11, Issue 10. P.1472; Vahl J.M. et al. // British Journal of Cancer. 2017. VOL. 117. № 11. P. 1644-1655), ассоциированных с опухолевым ростом, в частности плейотропного IL-4, участие которого обязательно также в синтезе IgE, ответственного за развитие анафилаксии и других реакций гиперчувствительности немедленного типа, и провоспалительного IL-6.

В ранее проведенных исследованиях показано, что синтезированное в ФБГНУ "НИИ фармакологии имени В.В. Закусова" производное 5-оксипиримидина - СНК-411 понижало содержание Th2-цитокинов — плейотропного IL-4, провоспалительного IL-6 в сыворотке крови мышей-опухоленосителей C57BL/6 с LLC (Кузнецова О.С. и др. // Бюллетень экспериментальной биологии и медицины, 2015. Т.160, №10. С.488-491). Были определены перспективы дальнейшего изучения соединения СНК-411 и его хлоргидрата СНК-578.

Степень разработанности проблемы.

В ФГБНУ «НИИ фармакологии имени В. В. Закусова» был проведен скрининг производных 5-оксипиримидинов и 3-оксипиридинов и отобрано соединение СНК-411, 2-изобутил-4,6-диметил-5-оксипиримидин (Середенин С.Б. и соавт. Патент РФ № 2518889, 2014), продемонстрировавшее выраженные иммунофармакологические, противовоспалительные, противоопухолевые и антиметастатические свойства на различных моделях (Кузнецова О.С. и др. // Экспериментальная и клиническая фармакология. 2015. Т.78, №4. С.6-9; Коваленко Л.П. и др. // Бюллетень экспериментальной биологии и медицины. 2016. Т.161, №1. С.114-118; Кузнецова О.С. и др. // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2015. №1. С.142-146). Также было показано, что при совместном применении СНК-411 с доксорубицином наблюдалось усиление цитотоксического эффекта, позволяющее на порядок снизить концентрацию высокотоксичного доксорубицина (Кузнецова О.С. // Вестник Воронежского Государственного Университета. Серия: Химия. Биология. Фармация. 2015. №1, С.142-146), что обусловило дальнейшее изучение производных 5-оксипиримидина в комбинации с доксорубицином.

Недостатком соединения СНК-411 является его плохая растворимость, в связи с чем был произведен синтез хорошо растворимого в воде хлоргидрата СНК-411, соединения СНК-578, хлоргидрат 2-изобутил-4,6-диметил-5-оксипиримидина (Коваленко Л.П. и соавт. Патент РФ №2686672, 2019), и поставлена цель сравнительного исследования соединений СНК-411 и СНК-578 раздельно или в комбинации с доксорубицином на противоопухолевую, антиметастатическую и противовоспалительную активности.

Цель исследования. Целью данной работы являлась оценка противоопухолевой, противовоспалительной и антиметастатической активности СНК-411 и СНК-578 и их комбинаций с доксорубицином.

Для достижения цели были поставлены следующие задачи:

Задачи исследования.

- 1. Исследовать влияние СНК-578 раздельно и в комбинации с доксорубицином на основные показатели неспецифического, гуморального и клеточного иммунного ответа в опытах на мышах линий СВА, С57ВL/6 и гибридах F₁(СВАхС57ВL/6) и сопоставить их с результатами ранее проведенных исследований иммунофармакологической активности СНК-411.
- 2. Определить противовоспалительную активность СНК-578 на моделях острого экссудативного воспаления: отека лапы на каррагенан у аутбредных самцов крыс, реакции воспаления на Конканавалин А (КонА) у мышей самцов линии СВА; сравнить их с результатами ранее проведенных исследований противовоспалительной активности СНК-411.
- 3. Исследовать противоаллергенную активность СНК-411 и СНК-578 в опытах на самцах морских свинок альбиносов на модели общей системной анафилаксии к овальбумину.
- 4. Оценить влияние курсового введения СНК-411 и СНК-578 на рост опухоли на модели рака шейки матки (РШМ-5) в опытах на самках мышей линии СВА.
- 5. Методом проточной цитометрии определить содержание цитокинов, ассоциированных с опухолевым ростом, в сыворотке крови животных-опухоленосителей, на модели рака шейки матки (РШМ-5) в опытах на самках мышей линии СВА.
- 6. Исследовать противоопухолевую активность и выживаемость после курсового введения СНК-411 и СНК-578 и в комбинации с доксорубицином на модели эпидермоидной карциномы легкого Lewis (LLC) в опытах на мышах самцах линии С57В1/6.
- 7. Оценить антиметастатическую активность курсового введения СНК-411 и СНК-578 и в комбинации с доксорубицином у животных-опухоленосителей LLC в опытах на самцах мышей линии С57BL/6 после удаления первичного опухолевого узла.
- 8. Методом проточной цитометрии определить содержание цитокинов, ассоциированных с опухолевым ростом, в сыворотке крови животных-опухоленосителей LLC в опытах на самцах мышей линии C57BL/6 после удаления первичного опухолевого узла.

Научная новизна. Впервые были исследованы иммунофармакологические, противовоспалительные, противоопухолевые и антиметастатические свойства соединения СНК-578, выявлена или подтверждена аналогичная активность соединения СНК-411.

На моделях реакции воспаления на КонА и каррагенан впервые установлены выраженные противовоспалительные свойства СНК-578 в дозе 10 мг/кг, сопоставимые с диклофенаком, и подтверждены у соединения СНК-411 в дозах 10 - 50 мг/кг. Впервые установлено подавление реакции анафилаксии на овальбумин под влиянием соединений СНК-411 в дозе 50 мг/кг и СНК-578 в дозах 25 мг/кг и 50 мг/кг. Выявлено, что соединение СНК-578 в отличие от СНК-411 не стимулировало гуморальное звено иммунитета, в комбинации с доксорубицином значимо подавляло антителообразование, снижало массу и клеточность тимуса, а монотерапия СНК-578 приводила к снижению клеточности селезенки и тимуса.

Впервые обнаружены выраженные противоопухолевые свойства СНК-578 и СНК-411 на модели рака шейки матки РШМ-5: СНК-578 ингибировало рост массы опухоли на 86,5%. СНК-411 подавляло уровни проонкогенного цитокина IL-17A и IL-10, СНК-578 – IL-6, IL-10 и IL-17A. На концентрацию IFN-у производные 5-оксипиримидина не оказывали подавляющего действия.

Впервые выявлены противоопухолевые и антиметастатические свойства соединения СНК-578 на модели LLC. СНК-578 ингибировало рост объема опухоли на 72,2%. После удаления первичного опухолевого узла – соединение СНК-578 в дозе 10 мг/кг и в комбинации с доксорубицином подавляло процесс метастазирования. СНК-411 подавляло процесс метастазирования в дозе 25 мг/кг. СНК-411 и СНК-578 снижали содержание провоспалительных и проонкогенных Th2 цитокинов IL-4, IL-5, IL-6 и не оказывали негативного влияния на противовирусный и противоопухолевый Th1 цитокин IFN-у.

Теоретическая и практическая значимость работы.

Определены направления поиска соединений с противовоспалительными, противоаллергенными, противоопухолевыми и антиметастатическими свойствами в ряду производных 5оксипиридина. Изученные производные 5-оксипиримидина соединения СНК-411 и СНК-578 определены как перспективные для разработки в качестве средств противоопухолевой иммунотерапии.

Положения, выносимые на защиту.

1. СНК-578 в дозах 10 мг/кг и 25 мг/кг не стимулирует гуморальное звено иммунитета и фагоцитарную активность перитонеальных макрофагов, в комбинации с доксорубицином подавляет антителообразование у мышей. СНК-578 в дозе 10 мг/кг повышает клеточный иммунный ответ. СНК-578 в дозе 10 мг/кг снижает клеточность селезенки, в дозе 25 мг/кг – клеточность селезенки и тимуса.

- 2. СНК-578 в дозах 10-50 мг/кг проявляет выраженные противовоспалительные и противоаллергенные свойства на моделях воспаления у мышей, крыс и аллергического воспаления на модели общей системной анафилаксии у морских свинок. СНК-411 проявляет противоаллергенную активность в дозе 50 мг/кг.
- 3. СНК-578 и СНК-411 вызывают выраженное торможение роста опухоли рака шейки матки (РШМ-5) у мышей. СНК-411 подавляет уровни проонкогенных цитокинов IL-10 и IL-17A в сыворотке крови мышей-опухоленосителей. СНК-578 подавляет уровни IL-6, IL-10 и IL-17A. На уровень Th1-цитокина IFN-γ производные 5-оксипиримидина подавляющего действия не оказывают.
- 4. СНК-578 и СНК-411 в дозах 10-25 мг/кг обладают противоопухолевой активностью на модели перевиваемой LLC с первичным опухолевым узлом у мышей. СНК-578 увеличивает продолжительность жизни мышей-опухоленосителей.
- 5. СНК-578 в дозе 10 мг/кг и в комбинации с доксорубицином обладает антиметастатическими свойствами и увеличивает продолжительность жизни мышей на фоне удаления первичного опухолевого узла перевиваемой LLC. СНК-411 подавляет метастазирование и увеличивает продолжительность жизни в дозе 25 мг/кг. СНК-578 и СНК-411 снижают содержание Th2 цитокинов IL-4, IL-5, IL-6 в сыворотке крови мышей-опухоленосителей, не подавляя содержание Th1 цитокина IFN-γ на фоне удаления первичного опухолевого узла LLC.

Степень достоверности и апробация результатов. Достоверность результатов всех исследований подтверждается адекватными методами статистического анализа и повторами серий опытов. Результаты диссертационной работы доложены на V съезде фармакологов России «Научные основы поиска и создания новых лекарств» (Ярославль, 2018), Всероссийской научной конференции молодых ученых «Достижения современной фармакологической науки» (Рязань, 2019), Всероссийской конференции с международным участием по медицинской химии «МеdChem Russia» (Екатеринбург, 2019), XXVII Российском национальном конгрессе "Человек и лекарство" (Москва, 2020), ІІ конференции молодых ученых (Москва, 2021), Всероссийской научно-практической конференции с международным участием «Клиническая и экспериментальная фармакология: достижения в науке, практике, образовании» (Курск, 2021). Основные положения диссертационной работы были представлены на программе "РакФонд" при поддержке компании «СайСторЛаб» (Сколково).

Личный вклад автора состоит в выполнении экспериментальной и аналитической части диссертации, автором проведена обработка и интерпретация полученных данных. При участии автора также были подготовлены публикации по результатам диссертационной работы.

Связь темы диссертационной работы с планом научных работ учреждения. Диссертационная работа выполнена согласно плану научно-исследовательской работы ФГБНУ "НИИ фармакологии им. В.В. Закусова" по теме "Фармакологическое предупреждение генотоксических эффектов при воздействии средовых факторов и в моделях патологических состояний" (Рег.№ 0521-2019-0004).

Сведения о публикациях по теме диссертации. По результатам диссертационной работы опубликовано 10 печатных работ, из них 4 статьи в журналах из перечня рецензируемых научных журналов, рекомендованных ВАК Минобрнауки РФ, в изданиях, входящих в базы Web of Science и Scopus, 6 тезисов докладов в материалах российских и международных конференций.

Структура и объем диссертации. Диссертационная работа изложена на 117 страницах печатного текста и состоит из введения, обзора литературы, описания материалов и методов исследования, результатов экспериментов, их обсуждения, выводов и списка литературы. Иллюстрирована 16 таблицами и 22 рисунками. Библиографический указатель включает 89 отечественных и 183 иностранных источника.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Экспериментальные животные. В работе были использованы самцы мышей линий С57ВІ/6, СВА, гибриды F₁(СВАхС57ВІ/6) и самки линии СВА массой 18-20 г, аутбредные крысы-самцы массой 140-160 г, самцы морских свинок-альбиносов массой 250-300 г, полученные из сертифицированного питомника «Филиал Столбовая» ФГБУН НЦБМТ ФМБА России. Животные содержались на стандартном полнорационном брикетированном корме со свободным доступом к воде и пище в контролируемых условиях окружающей среды: при 20-24°С, 45-65% относительной влажности и 12-ти часовом цикле освещения. Все эксперименты были рассмотрены и утверждены комиссией по биомедицинской этике ФГБНУ «НИИ фармакологии имени В.В. Закусова» и были проведены в соответствии с международными правилами Руководства «Guide for the care and use of laboratory animals (ILAR publication, 2011, National Academy press)».

Общее количество использованных в работе животных составило: 665 мышей, 70 крыс, 56 морских свинок. Условия содержания животных соответствуют требованиям, указанным в Межгосударственном стандарте РФ ГОСТ 33044-2014 «Принципы надлежащей лабораторной практики».

Опухолевые клеточные линии и штаммы. Опухолевые клеточные линии эпидермоидной карциномы легкого Lewis (LLC) и рака шейки матки РШМ-5 были получены из банка опухолевых культур ФГБУ НМИЦ онкологии им. Н.Н. Блохина и поддерживались перевиванием опухолевой культуры в соответствии с методическими рекомендациями (Руководство по экспе-

риментальному доклиническому изучению новых фармакологических веществ. Часть 4. М.: ОАО "Издательство "Медицина", 2005. С.637-651).

Исследуемые агенты. СНК-411 (2-изобутил-4,6-диметил-5-оксипиримидин) с выраженными противоопухолевыми и иммуномодулирующими свойствами (Середенин С.В. и соавт. Патент РФ № 2518889, 10.06.2014) и СНК-578 (хлоргидрат 2-изобутил-4,6-диметил-5-оксипиримидина), обладающее противоопухолевой и антиметастатической активностью, а также с выраженными противовоспалительными и противоаллергенными свойствами (Коваленко Л.П. и соавт. Патент РФ № 2686672, 30.04. 2019), были синтезированы в отделе химии лекарственных средств ФГБНУ «НИИ фармакологии имени В.В. Закусова» старшим научным сотрудником, кандидатом химических наук Никитиным С.В. и запатентованы.

Препараты для верификации используемых моделей. Диклофенак (диклофенак натрия, Hemofarm, Сербия) - нестероидное противовоспалительное лекарственное средство (регистрационный номер № П N011648/03). Доксорубицин-Эбеве (доксорубицина гидрохлорид, ЭБЕВЕ Фарма Гес.м.б.Х.НФГ.КГ, Австрия) — противоопухолевое средство, антибиотик антрациклинового ряда (регистрационный номер № П N015188/01).

Дозы, режимы и пути введения исследуемых агентов. СНК-578 в дозах 10, 25 и 50 мг/кг вводили внутрибрюшинно (в/б) в физиологическом растворе однократно, трехкратно или курсовым 8-ми дневным или 14-дневным введением, СНК-411 в дозах 10, 25 и 50 мг/кг вводили в/б в 1% растворе крахмала однократно, трехкратно или курсовым 8-ми дневным или 14-дневным введением. Контрольным животным вводили 1% раствор крахмала или физиологический раствор.

Иммунофармакологические методы

В исследованиях использовались методы оценки иммунофармакологической активности веществ в соответствии с рекомендациями «Руководства по проведению доклинических исследований лекарственных средств» (Глава 2, 3. М.: ОАО "Издательство "Медицина", 2005)

Исследование гуморального иммунного ответа в реакции пассивной гемагглютинации на тимусзависимый антиген (эритроциты барана (ЭБ)). После 3x-дневного в/б введения соединений самцам мышей линий CBA и C57Bl/6 в/б вводили суспензию ЭБ в субоптимальной дозе 5×10^7 ЭБ/мышь. Через 7 дней после иммунизации животных подвергали эвтаназии и получали сыворотку крови. Титр антител выражали величиной $\log_2 T$, где T — титр антител исследуемой сыворотки.

Исследование клеточного иммунного ответа в реакции гиперчувствительности замедленного типа. После трехкратного введения соединений самцам мышей гибридов $F_1(CBA \times C57BL/6)$ вводили подкожно (п/к) суспензию ЭБ в дозе 1×10^7 ЭБ/мышь, в объёме 100 мкл. Разрешающую дозу антигена, 1×10^8 ЭБ в объёме 20 мкл, вводили на 5 день после сен-

сибилизации под апоневротическую пластинку задней конечности, в контрлатеральную лапу – 20 мкл физиологического раствора. Учёт интенсивности воспалительной реакции проводили через 24 часа после разрешающей дозы антигена по индексу реакции (И_Р).

Оценка фагоцитарной активности перитонеальных макрофагов была проведена на самцах мышей гибридов $F_1(CBA \times C57BL/6)$ по интенсивности захвата ими частиц туши, введенной животным в/б в виде 0.05% суспензии в объеме 2 мл после трехкратного в/б введения соединений. Оптическую плотность определяли с помощью спектрофотометра при длине волны 620 нм. Результаты выражали в условных единицах, отражающих оптическую плотность лизата клеток перитонеального экссудата, соотнесенную с количеством фагоцитирующих клеток.

Определение массы и концентрации ядросодержащих клеток органов иммунной системы было проведено на мышах гибридах $F_1(CBA \times C57BL/6)$. Лимфоидные органы (тимус, селезёнку и подколенные лимфатические узлы) взвешивали на торсионных весах и готовили клеточную взвесь в растворе Хенкса, добавляли 10 мкл 0,4% раствора трипанового синего, вносили в рабочую камеру счетчика клеток TC20 (BioRad, Великобритания) на слайде. Результаты выражали в виде общего количества клеток/мл, определяя присутствие красителя, количество и долю жизнеспособных клеток.

Оценка генерации активных форм кислорода методом люминол-зависимой клеточной хемилюминесценции (ХЛ) была проведена на самцах мышей-гибридов F₁(CBA×C57BL/6). В качестве источника нейтрофилов была использована гепаринизированная кровь мышей. В качестве стимулятора ХЛ применялся опсонизированный сывороткой мышей различных линий зимозан. ХЛ регистрировали на фотометре биолюминесцентном БЛМ-3607М1 (Россия).

Исследования противовоспалительной и противоаллергенной активности соединений. При каррагенан-индуцированном отеке в течение 5 часов после введения соединений каждый час измеряли отек стопы аутбредных крыс инженерным микрометром с глубиномером. При КонА-индуцированном воспалении определяли массу лап мышей СВА через два часа после введения соединений и подсчитывали индекс реакции воспаления. Для изучения аллергизирующих свойств была выбрана модель пероральной трехкратной сенсибилизации интактных морских свинок-альбиносов 0,6% или 1% раствором БКЯ (белка куриного яйца, овальбумина): иммунизация 1% раствором БКЯ приводила в контрольной группе к быстрой 100% гибели всех животных. Для получения системной реакции анафилаксии различной степени тяжести во второй серии опытов животных контрольной и опытных групп иммунизировали перорально 0,6% раствором БКЯ в течение трех дней.

Методы оценки противоопухолевой и антиметастатической активности

В исследованиях использовались методы оценки противоопухолевой и антиметастатической активности веществ в соответствии с рекомендациями «Руководства по проведению до-

клинических исследований лекарственных средств» (Глава 3, Часть 4. М.: ОАО "Издательство "Медицина", 2005)

Модели перевиваемых опухолей. В качестве одной из экспериментальных моделей злокачественного роста была использована эпидермоидная карцинома легкого Lewis (LLC). Взвесь опухолевых клеток имплантировали мышам линии С57ВІ/6 п/к в область подмышечной впадины не менее чем по $3x10^6$ клеток в 0,3 мл раствора Хэнкса на одну мышь. Для моделирования злокачественного роста также была использована взвесь опухолевых клеток рака шейки матки РШМ-5, имплантируемых мышам линии СВА п/к в область подмышечной впадины по $3x10^6$ клеток в 0,3 мл раствора Хэнкса на одну мышь. Стандартная прививочная доза в обеих моделях составляла не менее $3x10^6$ клеток/мышь. Исследуемые соединения вводили в/б в течение 2-х недель. В качестве позитивного контроля и препарата для изучения совместного действия с производными 5-оксипиримидина применяли доксорубицина гидрохлорид — его вводили однократно на 2-й день развития опухоли в малой дозе, 4 мг/кг в/б.

<u>Оценку противоопухолевой и антиметастатической активности соединений в различных моделях злокачественных перевиваемых опухолей</u> проводили по ингибированию роста опухоли по массе или объему (m, мг; V, мм³; ТРО, %), средней продолжительности жизни (СПЖ, дни), увеличению продолжительности жизни (УПЖ, %). Эффекты СНК-411 и СНК-578 также сравнивали по кривым выживаемости методом множительных оценок Kaplan-Meier.

Антиметастатические свойства исследуемых соединений исследовали на модели удаления первичного опухолевого узла: на 14-й день после прививки опухолевых клеток в дозе 1×10^6 лапки с опухолью ампутировали по голеностопному суставу при наложении перетягивающего жгута, операционную рану обрабатывали медицинским клеем во всех группах. Антиметастатические свойства исследуемых соединений оценивали по частоте метастазирования (%), среднему количеству метастазов ($M\pm m$), индексу ингибирования метастазирования (%), продолжительности жизни (СПЖ, дни; УПЖ, %).

<u>Исследование цитокинов в сыворотке крови животных-опухоленосителей в модели рака</u> <u>шейки матки РШМ-5</u> проводили на проточном лазерном цитометре BD FACSCanto II (BD Biosciences, США) по методу мультиплексного определения флуоресцентных частиц (LEGENDplex Custom Mouse 10-plex Panel, BioLegend, США) согласно протоколу производителя. Были исследованы цитокины IL-2, IFN-γ, IL-17A, IL-17F, IL-6, IL-4, IL-5, IL-10, IL-11, IL-13. Забор сыворотки у животных проводили на 21-й день развития опухоли РШМ-5, образцы хранили при - 30°С до исследования концентраций цитокинов. Результаты обрабатывали в программе LEGENDplex v8.0 и выражали в пг/мл.

<u>Исследование цитокинов в сыворотке крови животных-опухоленосителей в модели LLC</u> на фоне удаления первичного опухолевого узла проводили на проточном лазерном цитометре

BD FACSCanto II методом мультиплексного определения флуоресцентных частиц (Mouse Th1/Th2 10plex Kit, eBioscience, Австрия) согласно протоколу производителя. Были исследованы цитокины IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, IFN-γ, GM-CSF, TNF-α. Забор сыворотки у животных проводили путем декапитации на 22-й день развития опухоли LLC. Образцы хранили при -30°C до исследования концентраций цитокинов. Результаты обрабатывали в программе FlowCytoMix Pro 2.2.1 и выражали в пг/мл.

Статистическую обработку экспериментальных данных проводили с помощью программы Statistica 10. Все регистрируемые характеристики животных представлены в таблицах в виде среднего и стандартной ошибки среднего (Mean±SEM) или медианы и первого и третьего квартилей (Me (Q1; Q3)). Проверка на нормальность распределения проводилась с применением общепринятых методов (критерий Шапиро-Уилка, критерий Колмогорова-Смирнова). Для проверки гипотезы об однородности групп исследования с нормальным распределением в исследуемой популяции проводили тестирование отсутствия различий между группами при помощи t-критерия Стьюдента. В случае не Гауссовского распределения для сравнения показателей использовались непараметрические критерии Манна-Уитни, Вилкоксона, дисперсионный непараметрический критерий Краскела-Уоллиса. Результаты считались статистически значимыми, если значение Р для теста было меньшим или равным 0,05. Оценку гомогенности дисперсий проводили по Levene's test. Значимость влияния факторов при гомогенной дисперсии определялась с помощью дисперсионного анализа ANOVA, методом множественных сравнений Newman-Keuls или Dunnett. Для анализа выживаемости использовался метод множительных оценок Kaplan-Meier, для оценки достоверности различий между кривыми выживаемости использовался Cox's F-test. При сравнении частотных показателей применяли точный критерий Фишера.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ Оценка иммунофармакологических свойств соединений СНК-411 и СНК-578

<u>Исследование гуморального и клеточного иммунного ответа.</u> Анализ полученных данных выявил выраженное подавление Th2 гуморального ответа после введения комбинации CHK-578 (10 мг/кг, в/б, 3-кратно) с доксорубицином (4 мг/кг, в/б, однократно). CHK-578 не вызывал активацию гуморального иммунного ответа на ЭБ.

Величина клеточного иммунного ответа значимо повысилась на 30,3% у животных, получавших СНК-578 в дозе 10 мг/кг, по сравнению с контрольной группой.

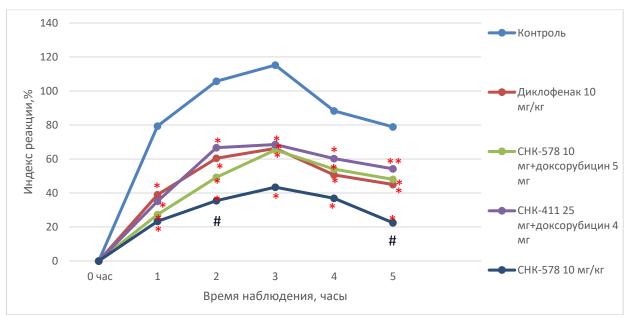
<u>Исследования фагоцитарной активности перитонеальных макрофагов и генерации активных форм кислорода методом люминол-зависимой клеточной хемилюминесценции</u>

показали, что введение в/б СНК-578 в дозе 10 мг/кг и его комбинации с доксорубицином не приводило к значимому изменению фагоцитарного индекса и показателей хемилюминесцентного ответа нейтрофилов на опсонизированный зимозан.

<u>Определение массы и концентрации ядросодержащих клеток органов иммунной системы.</u> Соединение СНК-578 снижало клеточность селезенки и тимуса (таблица 1), а в сочетании с доксорубицином — массу и клеточность тимуса, что говорит о достаточно выраженном его цитостатическом действии, что необходимо подтвердить в дальнейших исследованиях.

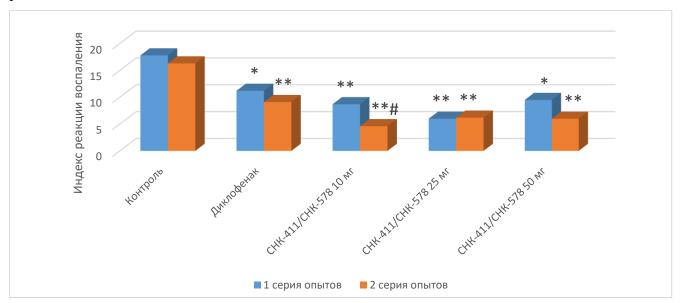
 Таблица 1.

 Влияние СНК-578 и его комбинации с доксорубицином на клеточность органов иммунной системы


Группа,	Индекс клеточности = $\frac{n*10^6 \kappa \text{леток}}{MN*2_{opeaha}}$, (Mean±SEM)				
n=10	Индекс клеточности селезенки, 106	Индекс клеточности тимуса, 106	Индекс клеточности лимфоузлов, 10 ⁵		
Контроль	63,77±6,78	96,41±7,6	53,95±11,06		
СНК-578, 10 мг/кг	38,35±3,53*	81,41±9,36	41,75±9,91		
СНК-578, 25 мг/кг	39,35±7,29*	57,81±4,84*	25,7±7,47		
Доксорубицин, 4 мг/кг	49,96±10,73	58,66±7,53*	26,5±5,7*		
СНК-578, 10 мг/кг+ доксорубицин,4 мг/кг	60,7±7,0	60,39±7,3*	34,09±11,13		

Примечание: *- p < 0.05 по сравнению с контрольной группой по критерию Манна-Уитни, n - количество животных в группе.

Оценка противовоспалительной и противоаллергенной активности соединений СНК-411 и СНК-578


Для исследования противовоспалительной активности были использованы модели острого экссудативного отека на каррагенан у крыс и острого воспаления на КонА у мышей.

Введение соединения СНК-578 в дозе 10 мг/кг подавляло (р<0,01) воспалительную реакцию у крыс по сравнению с контрольной группой в 2,4-3,5 раза на протяжении всего опыта, при этом максимальная выраженность эффекта наблюдалась на третий час регистрации отёка лапы (рисунок 1). У животных, получавших комбинацию соединений СНК-411 в дозе 25 мг/кг и доксорубицина в дозе 4 мг/кг, каррагенан-индуцированный отек был значимо подавлен в течение всего опыта: в 2,3 раза на первый час опыта, в 1,7 раз на второй и третий час, в 1,5 раза на четвертый и пятый часы эксперимента по сравнению с контрольной группой. Введение комбинации соединений СНК-578 в дозе 10 мг/кг и доксорубицина в дозе 4 мг/кг также приводило к значимому подавлению отека в 2,9 раза, 2,1 раза, 1,8 раз, 1,6 и 1,6 раз с первого по пятый час опыта, соответственно.

Рисунок 1. Противовоспалительная активность СНК-411, СНК-578 и их комбинаций с доксорубицином на модели экссудативного отека на каррагенан у крыс. Примечание: *- p < 0.01 по критерию Манна-Уитни по сравнению с группой контроля; ;**-p < 0.05 по критерию Манна-Уитни по сравнению с группой контроля; # - p < 0.05 по критерию Манна-Уитни по сравнению с группой диклофенака

На модели острого воспаления на КонА у мышей (рисунок 2) в первой серии опытов диклофенак подавлял реакцию воспаления на 37%, во второй – на 44%. Однократное в/б введение СНК-411 в дозе 10 мг/кг приводило к подавлению реакции воспаления на КонА на 51%, аналогичное введение СНК-578 в дозе 10 мг/кг – на 72%. Введение СНК-411 и СНК-578 в дозе 25 мг/кг также подтвердило противовоспалительную активность соединений в виде подавления реакции на 66,3% и на 62%, а в дозе 50 мг/кг – на 46,6 и 63%, соответственно.

Рисунок 2. Влияние производных 5-оксипиримидина СНК-411, СНК-578 на индекс реакции воспаления на КонА у мышей линии СВА. Примечание: * - p<0,05 по сравнению с контрольной группой по t-критерию Стьюдента; ** - p<0,01 по сравнению с контрольной группой по t-критерию Стьюдента; # - p<0,05 по сравнению с диклофенаком по t-критерию Стьюдента.

<u>При изучении противоаллергенной активности</u> было выявлено (таблица 2), что при иммунизации 1% раствором БКЯ, 4-х кратное в/б введение СНК-411 в дозе 50 мг/кг в 1,8 раза уменьшало индекс анафилактической реакции по Weigle на овальбумин относительно контрольной группы. При иммунизации животных 0,6% раствором БКЯ, СНК-578 в дозах 25 мг/кг и 50 мг/кг в 2,8 и в 10 раз снижало индекс анафилактической реакции.

Таблица 2. Противоаллергенные свойства СНК-411 и СНК-578 на модели системной анафилаксии на овальбумин у морских свинок

		0	+	++	+++	++++		
Группа, Индекс реакции по Weigle		(отсутствие ре- акции) (слабый (умеренный шок) шок)		(тяжелый шок)	(гибель)			
		Число животных с различной степенью реакции анафилаксии						
Контроль БКЯ 1%	4,0	-	-	-	-	8		
Супрастин 50 мг/кг	1,1*	3	2	2	1	-		
СНК-411 50 мг/кг	2,25*	2	2	-	-	4		
Контроль БКЯ 0,6%	2,5	-	3	1	1	3		
Супрастин 50 мг/кг	0,6*	5	1	2	-	-		
СНК-578 25 мг/кг	0,9*	5	1	1	-	1		
СНК-578 50 мг/кг	0,25*	6	2	-	-	-		

Примечание: n – количество животных в каждой группе; * - p<0,05 по сравнению с контрольной группой по критерию Манна-Уитни; ** - p<0,01 по сравнению с контрольной группой по критерию Манна-Уитни

Оценка противоопухолевой и антиметастатической активности соединений СНК-411 и СНК-578

Оценка противоопухолевой активности соединений в модели LLC. На 7 сутки после окончания курсового введения СНК-578 в дозе 10 мг/кг подавление роста объема опухоли составляло 3,6 раза по сравнению с контрольной группой: ТРО равно 72,2% (таблица 3). На 14 сутки после окончания введения ТРО в этой группе соответствовало 51,1%, однако не достигало уровня значимости относительно значения контрольной группы. При этом у 2 из 10 мышей, которым вводили соединение СНК-578, опухоль не развилась. Выраженное увеличение выживаемости по сравнению с контрольной группой выявлено в группе животных, которым вводили СНК-578 в дозе 10 мг/кг. Медиана продолжительности жизни мышей в этой группе составляла 43 дня; в контрольной группе данный показатель составил 28 дней. Увеличение продолжительности жизни мышей С57ВL/6 с LLC, получавших СНК-578 в дозе 10 мг/кг, соответствовало 38,6% по сравнению с контрольной группой.

Таблица 3. Влияние производных 5-оксипиримидина и их комбинаций с доксорубицином на объем опухоли LLC, степень торможения роста опухоли и выживаемость у мышей линии C57Bl/6

Группа, доза,	Показатели оце	нки противоопухо-	иваемость у мышеи линии С5/ВІ/6 День регистрации результатов		
n=10	левого действия	A.	через 7 дней после окончания введения	через 14 дней после окончания введения	
Активный контроль:	Объем LLC, мг		4218,1±863,52	6909,4±1774,60	
модель LLC и 1% рас-	TPO, %		-	-	
твор крахмала	СПЖ, дни		-	30,8±2,0	
	УПЖ, %		-	-	
	Харак-ки функ- ций выживаемо-	Нижний квартиль	-	27,0	
		Медиана	-	28,0	
	сти, дни	Верхний квартиль	-	35,0	
Модель LLC и доксо-	Объем LLC, мг		2883,9±400,32	4549,8±347,89	
рубицин, 4 мг/кг	TPO, %		31,63	34,15	
	СПЖ, дни		-	32,3±2,2	
	УПЖ, %		-	4,87	
	Харак-ки	Нижний квартиль	-	26,0	
	функций выжи-	Медиана	-	31,0	
	ваемости, дни	Верхний квартиль	-	39,0	
Модель LLC и CHK-	Объем LLC, мг		1173,2±477,58#	3378,2±1023,73	
578, 10 мг/кг	TPO, %		72,18#	51,11	
	СПЖ, дни		-	43,1±4,1	
	УПЖ, %		-	38,6*	
	Харак-ки функ- ций выживае- мости, дни	Нижний квартиль	-	30,0	
		Медиана	-	43,0	
		Верхний квартиль	-	56,0	
Модель LLC и CHK-	Объем LLC, мг		2458,4±494,85	4488,4±850,90	
411, 25 мг/кг	TPO, %		41,72	35,04	
	СПЖ, дни		-	37,4+3,3	
	УПЖ, %		-	20,5	
	Хар-ки функ- ций выживае-	Нижний квартиль	-	31,0	
	мости, дни	Медиана	-	35,0	
	moonin, gilli	Верхний квартиль	-	43,0	
Модель LLC и CHK-	Объем LLC, мг		2135,6±445,81	4357,2±873,06	
578, 10 мг/кг в комби-	TPO, %		49,37	36,94	
нации с доксорубици-	СПЖ, дни		-	36,8±3,3	
ном, 4 мг/кг	УПЖ, %		-	18,5	
	Харак-ки функ-	Нижний квартиль	-	30,0	
	ций выживае- мости, дни	Медиана	-	33,0	
	мости, дни	Верхний квартиль	-	42,0	
Модель LLC и CHK-	11, 25 мг/кг в комби- ТРО, %		1889,9±500,13#	4575,2±895,99	
411, 25 мг/кг в комби-			55,19#	33,78	
нации с доксорубици-	СПЖ, дни		-	35,3±3,1	
ном, 4 мг/кг	УПЖ, %	T	-	14,6	
	Харак-ки функ- Нижний квартил		-	31,0	
	ций выживае- мости, дни	Медиана	-	33,0	
Применание: п — количест		Верхний квартиль	- 	40,0	

Примечание: n — количество животных; # - p<0,05 по сравнению с контрольной группой, по Краскелу-Уоллису; * - p<0,05 по сравнению с контрольной группой по Cox's F-Test. ТРО-торможение роста опухоли, СПЖ-средняя продолжительность жизни, УПЖ-увеличение продолжительности жизни.

В отличие от СНК-578, соединение СНК-411 в дозе 25 мг/кг значимого действия на рост опухолевого узла через 7 и 14 дней после окончания его курсового введения не проявляло (ТРО составляло 41,7% и 35,0%, соответственно). При сочетанном курсовом введении СНК-411 в дозе 25 мг/кг и однократном введении доксорубицина в дозе 4 мг/кг на 7 день после прекращения введения соединений подавление роста опухоли составило 55,2%.

Оценка противоопухолевой активности соединений и исследование содержания цитокинов в сыворотке крови животных-опухоленосителей на модели РШМ-5. Перевиваемая опухоль РШМ-5 является плоскоклеточной злокачественной опухолью, высота которой при диаметре 30 мм не всегда достигает 2 мм, в связи с чем измерение ее объема дает необъективные результаты. На 7-е сутки после окончания двухнедельного введения исследуемых веществ (21-й день развития опухоли) животных выводили из эксперимента, извлекали опухоль и взвешивали на аналитических весах. В группе животных, которым вводили СНК-578 в дозе 10 мг/кг, определили выраженное подавление роста массы опухоли (168,5 (0,0;281,0) мг) в 7,4 раза меньше по сравнению с контрольной группой (1255,0 (928,0;1816,0) мг): ТРО составило 86,6%. В группе животных, которым вводили соединение СНК-411 в дозе 25 мг/кг, средняя масса опухоли составила 718,5 (252,0;903,0) мг, наблюдалось подавление роста опухолевого узла на 42,7%.

Через 7 дней после окончания введения препаратов концентрация цитокинов IL-6, IL-10, IL-17A увеличилась (таблица 4) у животных с имплантированной опухолью (активного контроля) по сравнению с интактным контролем. Уровень Th1 цитокина IFN-γ во всех опытных группах статистически значимо не изменялся. Введение СНК-411 в дозе 25 мг/кг в/б выражено подавляло уровень IL-10 (в 1,9 раза) и IL-17A (в 2,5 раза) по сравнению с активным контролем и уменьшало их концентрацию до уровня интактного контроля. Курсовое введение СНК-578 в дозе 10 мг/кг подавляло уровни IL-10 (в 2,6 раза), IL-17A (в 3,4 раза). Концентрация IL-6, основного проонкогенного цитокина, который является связующим звеном сигнального пути JAK/STAT3 между воспалением, стимуляцией пролиферации раковых клеток и метастазированием, была значимо снижена в 1,4 раза по сравнению с группой активного контроля.

Согласно полученным данным, курсовое введение СНК-411 и СНК-578 выражено подавляло уровни Th2-цитокина IL-10 и стимулирующего ангиогенез в опухолях Th17-цитокина IL-17A. Результаты согласуются с данными о торможении роста опухоли РШМ-5 у самок мышей линии СВА соединениями СНК-411, СНК-578. На уровень Th1-цитокина IFN-γ, обладающего противовирусными и противоопухолевыми свойствами, производные 5-оксипиримидина подавляющего действия не оказывали. Согласно данным клинических исследований (Лазарев А.Ф. и др. // Вестник РОНЦ им. Н.Н.Блохина РАМН. 2012. Т.23. №3. С.24-28), при предраковом состоянии шейки матки, ее дисплазии, в сыворотке крови больных под воздействием плейотропного цитокина IL-4 нарушается баланс Th1- и Th2-цитокинов с выраженным уменьшением

IFN-γ, действующего на вирус папилломы человека, что в итоге и приводит к раку шейки матки. В ранее проведенных исследованиях (Кузнецова О.С. и др. // Вестник Воронежского Государственного Университета. Серия: Химия.Биология.Фармация. 2015. №1. С.142-146) у самцов мышей линии С57BL/6 с LLC курсовое введение СНК-411 приводило к выраженному подавлению уровня IL-4 в сыворотке крови мышей, что коррелировало с торможением роста опухоли.

 Таблица 4.

 Исследование содержания цитокинов в сыворотке крови животных-опухоленосителей с РШМ-5 при введении СНК-411 и СНК-578

Группы, дозы,	Цитокины, пг/мл (Median (Q1;Q4))				
n=10	IL-6	IL-10	IL-17A	IFN-γ	
Контроль без опухоли (интактный)	18,92 (12,24;27,12)	89,88 (67,12;103,76)	10,78 (7,24;11,92)	24,72 (19,36;34,12)	
Контроль с опухолью РШМ-5 (активный)	62,38 (51,36;133,36)#	125,84 (103,16;134,12)#	17,54 (13,88;20,20)#	44,68 (27,92;84,28)	
СНК-411, 25	58,48	65,76	7,02	41,24	
мг/кг	(47,32;91,28)	(54,64;104,88)##	(5,00;8,52)##	(30,40;76,92)	
СНК-578,10 мг/кг	44,44 (15,88;78,76)##	48,40 (14,48;64,32)##	5,2 (3,36;6,44)##	36,06 (29,48;43,88)	

Примечание: n - количество животных; # - p<0,05 по сравнению с группой контроля без опухоли, по тесту Ньюмана-Кейлса; ## - p<0,05 по сравнению с группой контроля с опухолью, по тесту Ньюмана-Кейлса.

В/б введение соединений осуществлялось со 2 по 15 дни развития РШМ-5. РШМ – рак шейки матки.

<u>Оценка антиметастатических свойств соединений и исследование содержания цитокинов</u> в сыворотке крови животных-опухоленосителей в модели LLC при удалении первичного опухолевого узла.

На 22 день после перевивания животным LLC, удаления первичного опухолевого узла на 14 день опыта и затем 8-ми дневной в/б монотерапии CHK-578 в дозе 10 мг/кг и CHK-411 в дозе 25 мг/кг рег оз среднее количество метастазов было значимо ниже (таблица 5) по сравнению с контрольной группой с неудаленной (контроль № 2, ИИМ-50,9%) и с удаленной опухолью (контроль №3, ИИМ-53,3%). При курсовом введении CHK-578 в дозе 10 мг/кг в сочетании с однократным введением доксорубицина в дозе 4 мг/кг среднее количество метастазов в группе было значимо ниже по сравнению с контролем №2.

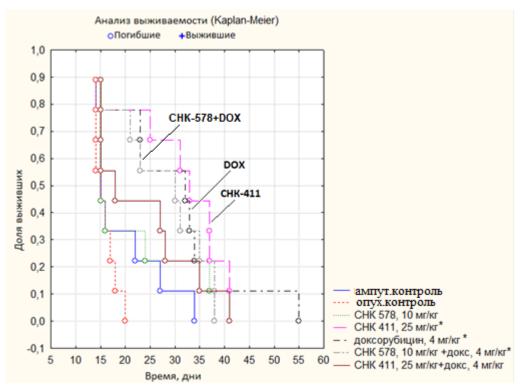

СНК-411 при курсовом в/б введении в дозе 25 мг/кг увеличивало среднюю продолжительность жизни на 60,2%, доксорубицин — на 53,9%, СНК-578 в дозе 10 мг/кг в сочетании с однократным введением доксорубицина в дозе 4 мг/кг - на 42,9%. Медиана выживаемости в контрольных группах составляла 15 дней, при введении СНК-411 — 33 дня, доксорубицина — 32 дня, СНК-578 и доксорубицина - 30 дней, СНК-411 и доксорубицина - 18 дней (рисунок 3).

Таблица 5. Оценка антиметастатических свойств СНК-411 и СНК-578 на модели перевиваемой карциномы легкого Льюис при удалении первичного опухолевого узла

Группы;	Контроль	Кон-	СНК-411,	СНК-578,	DOX,	СНК-411,	СНК-
n=8	№ 2 с не-	троль №	25 мг/кг	10 мг/кг	4 MG/KG	25 мг/кг	578,
	удален-	3 с уда-	per os	в/б	в/б	+DOX,	10 мг/кг
	ной опу-	ленной			одно-	4 мг/кг	+DOX,
	холью	опухо-			кратно		4 MG/KG
		лью					
Частота мета-	100	100	100	100	100	100	100
стазирования,							
%							
Среднее	11,4±2,3	$12,0\pm2,1$	5,6±0,8*#	5,6±1,1*#	$12,7\pm2,8$	$9,0\pm1,7$	$5,7\pm1,0\#$
количество							
метастазов							
(M±m)							
ИИМ, % по	-	-	50,9%	50,9%	-	21,0%	50,0%
сравнению с							
контролем №2							
с неудаленной							
опухолью							
ИИМ, % по	-	-	53,3%	53,3%	-	25,0%	52,5%
сравнению с							
контролем №3							
с удаленной							
опухолью							
Плименацие: * - x<0.05 по сраднению с контрольной группой с удаленной опууолью по критерию							

Примечание: * - p<0.05 по сравнению с контрольной группой с удаленной опухолью по критерию Манна-Уитни; # - p<0.05 по сравнению с контрольной группой с неудаленной опухолью по критерию Манна-Уитни; n — количество животных в группе. DOX — доксорубицин.

Таким образом, в поздние сроки опухолеобразования (на 14 сутки после инокуляции опухоли), были обнаружены выраженные антиметастатические свойства СНК-411 в дозе 25 мг/кг, СНК-578 в дозе 10 мг/кг и сочетания СНК-578 с однократным введением доксорубицина в дозе 4 мг/кг. Также было выявлено положительное влияние на выживаемость соединений СНК-411 и сочетания СНК-578 с доксорубицином на фоне удаления первичного опухолевого узла.

Рисунок 3. Анализ выживаемости мышей C57Bl/6 с перевиваемой LLC на фоне удаления первичного опухолевого узла по методу Kaplan-Meier. Примечание: *- p<0,05 по Cox's-F тесту по сравнению с группой контроля с удаленным опухолевым узлом. Ампут.контроль — контроль №3 с удаленной опухолью, опух.контроль — контроль №2 с неудаленной опухолью.

Концентрации Th2 цитокинов IL-4 и IL-5 и Th1 цитокина IFN-γ были определены во всех трех контрольных группах, IFN-γ был также определен во всех опытных группах, остальные цитокины были обнаружены в минимальных единичных значениях в каждой из опытных групп (рисунок 4).

Провоспалительный IL-6 и плейотропный IL-4, являющийся основным медиатором дифференцировки Т-лимфоцитов по Th2 типу, в сыворотках крови были обнаружены в значимых концентрациях в группах контроля №2 с неудаленной опухолью и контроля №3 с удаленным опухолевым узлом, а IL-4 и IL-5 также были определены в группе интактного контроля (рисунок 4). В опытных группах концентрация IL-4 и IL-6 цитокинов была ниже определяемого минимального порогового значения, что говорит о выраженном подавлении проонкогенных Th2 цитокинов производными 5-оксипиримидина. Полученный результат согласуется с клиническими данными о корреляции уровня IL-6 в сыворотке крови онкобольных со стадией заболевания и метастазированием, являясь прогностическим фактором неблагоприятного прогноза для общей выживаемости. Согласно данным последних лет, наблюдается повышенное содержание IL-4 в инфильтратах микроокружения солидных опухолей, коррелирующих с интенсивностью злокачественного развития (Wang H.-W. et al. // Cell Cycle. 2010. Vol.9, Issue 24. P. 4824-4835).

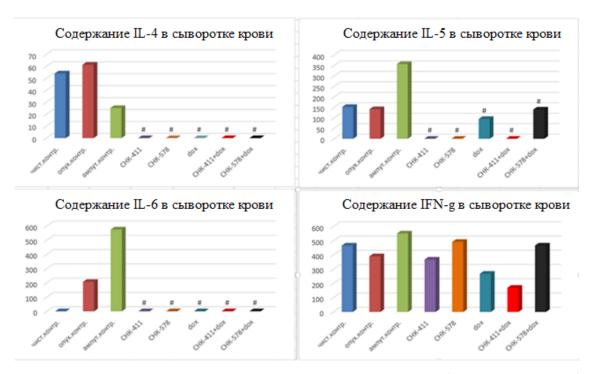


Рисунок 4. Влияние соединений СНК-411, СНК-578 и их комбинаций с доксорубицином на содержание цитокинов в сыворотке крови мышей-опухоленосителей LLC на фоне удаления первичного опухолевого узла. Примечание: #-по сравнению с группой ампут.контроля по тесту Dunnet. Чист. контр. - интактный контроль, опух. контр. − контроль №2 с неудаленным опухолевым узлом, ампут. контр. − контроль №3 с удаленным опухолевым узлом, dox − доксорубицин.

Концентрация Th2 цитокина IL-5, одного из основных медиаторов T2 воспаления, была выявлена в значительных количествах во всех трех контрольных группах, в опытных группах при введении доксорубицина и CHK-578 в комбинации с доксорубицином концентрация данного цитокина была на уровне контроля №2 с неудаленным опухолевым узлом, концентрация IL-5 в остальных группах была ниже определяемого минимального порогового значения, что также свидетельствует о подавлении гемопоэтического Th2-цитокина IL-5, стимулирующего опухольассоциированную эозинофилию. Подавление проонкогенных Th2 цитокинов IL-5 и IL-4, без изменения уровня Th1 цитокина IFN-γ, является важной характеристикой поликомпонентного действия CHK-411 и CHK-578, которое вместе с их выраженными противовоспалительными и иммуномодулирующими свойствами объясняет механизмы их противоопухолевого и противоаллергенного действия.

Согласно полученным данным, на фоне удаления первичного опухолевого узла было определено антиметастатическое действие соединений СНК-411 и СНК-578, положительное влияние СНК-411, доксорубицина и совместного в/б введения СНК-578 с доксорубицином на выживаемость и подавление содержания Th2 цитокинов.

На основе совокупности полученных результатов и нижеприведенных выводов следует заключить, что соединения СНК-411 и СНК-578 обладают противовоспалительными, противоаллергенными, противоопухолевыми и антиметастатическими свойствами.

ВЫВОДЫ

- 1. Производное 5-оксипиримидина СНК-578 в дозах 10 мг/кг и 25 мг/кг не стимулирует гуморальное звено иммунитета, в комбинации с доксорубицином подавляет антителообразование у мышей СВА и С57ВL/6. СНК-578 в дозе 10 мг/кг повышает клеточный иммунный ответ. СНК-411 в дозах 25-50 мг/кг повышает антителообразование и индекс гиперчувствительности замедленного типа. СНК-578 в дозе 10 мг/кг снижает клеточность селезенки, в дозе 25 мг/кг клеточность селезенки и тимуса у самцов мышей F₁(СВАхС57ВI/6).
- 2. СНК-578 в дозах 10-50 мг/кг подавляет острое экссудативное воспаление на каррагенан у аутбредных самцов крыс и воспаление на КонА у мышей самцов линии СВА. СНК-411 имеет сходный спектр противовоспалительной активности.
- 3. На модели системной анафилаксии при иммунизации морских свинок 0,6% раствором овальбумина СНК-578 в дозах 25 мг/кг и 50 мг/кг снижает индекс анафилактической реакции в 2,8 и в 10 раз. При иммунизации 1% раствором овальбумина, вызывающей гибель 100% животных, СНК-411 в дозе 50 мг/кг обеспечивает выживаемость животных и в 1,8 раза уменьшает индекс анафилактической реакции.
- 4. Торможение роста опухоли РШМ-5 под действием СНК-411 в дозе 25 мг/кг составляет 42,7%, в тех же условиях СНК-578 в дозе 10 мг/кг тормозит рост опухоли на 86,6%.
- 5. На модели РШМ-5 курсовое введение СНК-411 в дозе 25 мг/кг подавляло уровень цитокинов IL-10 и IL-17A, СНК-578 в дозе 10 мг/кг IL-6, IL-10 и IL-17A по сравнению с контролем с опухолью.
- 6. На модели LLC СНК-578 в дозе 10 мг/кг ингибирует рост опухоли на 72,2%, увеличение продолжительности жизни составляет 38,6%. При сочетанном курсовом введении СНК-411 в дозе 25 мг/кг и однократном введении доксорубицина в дозе 4 мг/кг зарегистрировано снижение объёма опухоли на 55,2%.
- 7. При курсовом введении СНК-578 в дозе 10 мг/кг в/б и СНК-411 в дозе 25 мг/кг в/б после удаления первичного опухолевого узла LLC индекс ингибирования метастазирования составил 53,3% в обоих случаях, при введении СНК-578 в дозе 10 мг/кг в сочетании с однократным введением доксорубицина в дозе 4 мг/кг индекс ингибирования метастазирования составил 52,5%. СНК-411 в дозе 25 мг/кг в/б увеличивал продолжительность жизни на 60,2 %.
- 8. На модели LLC на фоне удаления первичного опухолевого узла при курсовом введении СНК-411 и СНК-578 *per se* и в сочетании с однократным введением доксоруби-

цина в сыворотке крови животных не обнаружено проонкогенных Th2 цитокинов IL-4 и IL-6, не выявлено понижения Th1 цитокина IFN- γ , содержание Th2 цитокина IL-5 было снижено.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Производные 5-оксипиримидина соединения СНК-411 и СНК-578 являются перспективными для дальнейшего углубленного изучения механизмов их фармакологической активности противовоспалительных, противоаллергенных, противоопухолевых и антиметастатических свойств и определения возможных направлений разработки на их основе новых средств фармакотерапии опухолей.

СПИСОК СОКРАЩЕНИЙ

IFN-γ – интерферон гамма

IgE – иммуноглобулин Е

IL - интерлейкин

LLC – карцинома легкого Льюис

БКЯ – белок куриного яйца

в/б - внутрибрюшинно

ИИКТ – ингибитор иммунных контрольных точек

ИИМ – индекс ингибирования метастазирования

КонА – конканавалин А

РШМ – рак шейки матки

СПЖ – средняя продолжительность жизни

ТРО – торможение роста опухоли

УПЖ – увеличение продолжительности жизни

ХЛ – хемолюминесценция

ЭБ – эритроциты барана

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи

- 1. Коваленко Л.П. Влияние 2-изобутил-4,6-диметил-5-оксипиримидина на рост и метастазирование карциномы легкого Lewis у мышей линии C57Bl/6 [Текст] / Л.П. Коваленко, С.В. Никитин, А.В. Сорокина, И.А. Мирошкина, Е.А. Иванова, О.С. Кузнецова, **К.В. Коржова**, А.Д. Дурнев // Экспериментальная и клиническая фармакология. − 2020. − T.83. - №1. − С. 24-27
- 2. **Коржова К.В.** Влияние производных 5-оксипиримидина на рост опухоли и продолжительность жизни мышей линии C57Bl/6 с эпидермоидной карциномой лёгких [Текст] / **К.В. Коржова**, Л.П. Коваленко, Е.А. Иванова, С.В. Никитин, А.Д. Дурнев // Бюллетень экспериментальной биологии и медицины. − 2020. − Т.169. №2. − С. 226-229
- 3. Коваленко Л.П. Противоаллергенная и противовоспалительная активность производных 5-оксипиримидина (СНК-411 и СНК-578) [Текст] / Л.П. Коваленко, **К.В. Коржова**, С.В. Никитин // Экспериментальная и клиническая фармакология. − 2020. − Т.83 − № 10. − С. 9 − 12
- 4. Коваленко Л.П. Влияние производных 5-оксипиримидина на рост опухоли и содержание интерлейкинов в сыворотках крови самок мышей линии СВА с раком шейки матки (РШМ-5) [Текст] / Л.П. Коваленко, **К.В. Коржова**, Л.Ф. Зайнуллина, С.В. Никитин, Е.А. Иванова, Р.В.Журиков // Биомедицинская химия. − 2021. − Т. 67. − № 2. − С. 158-161

Тезисы

- 1. Коваленко Л.П. Изучение противовоспалительных, иммуномодулирующих и противоопухолевых свойств СНК-411 [Текст] / Л.П. Коваленко, С.В. Никитин, О.С. Кузнецова, Р.В. Журиков, А.В. Сорокина, И.А. Мирошкина, **К.В. Коржова** // Сборник материалов V съезда фармакологов России «Научные основы поиска и создания новых лекарств». 2018. С.115
- 2. Коваленко Л.П. Изучение противоопухолевой активности СНК-411 на экспериментальной модели рака шейки матки у мышей линии СВА [Текст] / Л.П. Коваленко, **К.В. Коржова**, Р.В. Журиков // Материалы Всероссийской научной конференции молодых ученых, посвященной 95-летию со дня рождения профессора А.А. Никулина "Достижения современной фармакологической науки". 2018. C.62
- 3. Никитин С.В. Design, synthesis and biological activity of 5-охуругітійіпе derivative [Текст] / С.В. Никитин, **К.В. Коржова**, Е.А. Иванова, Л.П. Коваленко // Сборник материалов IV Всероссийской конференции с международным участием по медицинской химии «Меd-Chem Russia 2019». 2019. С.383
- 4. **Коржова К.В.** Противоопухолевая и противовоспалительная активность производных 5-оксипиримидинов [Текст] / **К. В. Коржова**, Л. П. Коваленко, С. В. Никитин, Е. А. Иванова, А. Д. Дурнев // Сборник материалов XXVII Российского Национального Конгресса "Человек и лекарство 2020" 2020. С.60
- 5. **Коржова К.В.** Изучение противоопухолевых свойств производных 5-оксипиримидинов на модели эпидермоидной карциномы легкого Lewis [Текст] / **Коржова К.В.,** Коваленко Л.П., Журиков Р.В., Никитин С.В. // Клиническая и экспериментальная фармакология: достижения в науке, практике, образовании. Материалы Всероссийской научно-практической конференции с международным участием, посвященной 86-летию Курского государственного медицинского университета, 80-летию со дня рождения профессора Н.Г. Филиппенко, 80-летию со дня рождения профессора В.В. Пичугина. 2021. С. 38.
- 6. **Коржова К.В.** Изучение противовоспалительной и иммунотропной активности соединения СНК-578 и комбинаций с доксорубицином [Текст] / **Коржова К.В.**, Коваленко Л.П., Иванова Е.А, Никитин С.В. // ІІ Научная конференция молодых ученых "Актуальные исследования в фармакологии"- 2021. С.232-233